Park Residence @Medini

Additional SI Borehole for optimisation of pile length design

(by Ms. Yap Fui It, Design Engineer) (2015 Oct-Dec)

Project Introduction

This is one of the prime residential development project in Medini Johor which comprises of 3 blocks high rise condominium with 40 storey, 44 storey and 46 storey respectively, including 10 storeys of podium car park with a few unit of retails. The foundation is under Contractor Alternative Design using 243 number of bored pile with sizes ranging from 600mm to 2000mm diameter and 67 number of caisson pile with sizes ranging from 2200mm to 2600mm diameter. The total construction duration is 7 months which including piling and pile cap works. The most challenging of this project is the determination of pile length where the actual ground condition is partly in Sedimentary formation of Sandstone and partly in poor residual Granite formation. The later was encountered during the additional soil investigation and actual bored pile construction.

Site Photo

Alternative Design Proposal

We proposed a combination of bored pile and caisson pile with mostly single pile system to replace the original full bored pile in multiple piles group arrangement. Based on the available soil investigation data during the tender stage, the piling layout was divided into 8 zones for pile length design.

Based on our earlier experience in Encorp Marina project in the same area, we have confidently designed the optimum pile length in the Sedimentary formation area in order to keep our pricing competitive.

Design Challenges

As per the provision of Bill of Quantity, 10 nos. of additional soil investigation borehole, ABH were being carried out. We started to find out the unpredictable ground condition at ABH2 in Zone 2. Decision was made to add ABH11 near to the earlier BH1 for verification and ABH12 to find out the transition zone in between Zone 1 & 2. Unfortunately, ABH12 was the worst result and the required pile length more than 60m! In order to have more confident in determining the pile length within the transition zones, we then immediately decided to do ABH13 & 14 in that problematic area.

Zone 1-Worst ABH					Zone 5-Intermidiate Result				
ABH12					ABH5				
Depth (m)	STP-N	Colour	Soil		Depth (m)	STP-N	Colour	Soil	
0	0	Light Brown	sSi		0	0	Medium Orange	Si	
1.5	7	Light Brown	sSi		4.5		Madium Oranaa	0	
3	8	Light Yellow	sSi		1.5	1	Medium Orange	51	
4.5	10	Light Yellow	sSi		3	8	Dark Brown	Si	
6	14	Light Red	sSi		4.5	10	Dark Brown	Si	
7.5	16	Pale Red	s5i		6	27	Light Brown	Si	
10.5	15	Fale Red	551		7.5	24	Light Brown	Si	
10.5	17	Medium Orange	eSi		9	44	Dark/Light Brown	Si	
13.5	22	Medium Orange	eSi		10.5	56	Medium Red	Si	
15	21	Dark Orange	sSi		12	32	Light Purple Dark	Si	
16.5	23	Dark Orange	sSi		13.5	30	Light Purple	Si	
18	26	Pale Purple	sSi		15	39	Dark Brown	Si	
19.5	24	Light Purple	Si		16.5	44	Dark Brown	Si	
21	28	Light Purple	Si		10.5	20	Ligth Dumlo	0	
22.5	31	Light Orange	Si		10 5	32	Light Purple	0	
24	32	Light Orange	Si		19.5	35	Ligin Purple	51	
25 5	26	Light Dod	-Si		21	38	Pale Grey	Si	
25.5	30	Light Neu	501		22.5	41	Pale Grey	Si	
2/	40	Light Purple	SOI		24	36	Ligth Purple	Si	
28.5	55	Light Purple	sSi		25.5	67	Pale Grey	sSi	
30	30	Pale Grey	sSi		27	125	Dark Brown	sSi	
31.5	35	Pale Grey	s5i		28.5	143	Dark Brown	sSi	
24 5	20	Light Grov	-81		30	33	Dark Brown	sSi	
34.5	32	Light Grey	501 •Ci		31.5	36	Dark Brown	sSi	
36	36	Light Grey	s5i		33	56	Dark Brown	sSi	
37.5	30	Light Grey	551		34.5	79	Dark Brown	sSi	
39 40 F	45	Pale Grey	551		36	73	Dark Brown	sSi	
40.5	40	Light Grov	soi		37.5	100	Dark Brown	sSi	
43.5	42	Light Grey	sSi		39	136	Pale/Light Grev	sSi	
45	32	Light Grey	sSi		40.5	142	Palo/Light Grov	cSi	
45.7	53%/0%	Dark Brown(Highly	SD		40.5	. 200	Pale/Light Crey	50i	
47.2	85%/0%	Weathered & Very Poor)	SD		42	>300	Pale/Light Grey	551	
48.2	103	Dark Brown	sSi		43.5	>300	Pale/Light Grey	sSi	
49.5	103	Dark Brown	sSi		45	>300	Pale/Light Grey	SSI	
51	47	Dark Orange	sSi		45.075		END @45.075m		
52.5	45	Light Red	sSi						
54	50	Light Orange	sSi						
55.5	41	Dark Orange	sSi						
57	43	Dark Orange	sSi						
58.5	40	Dark Orange	sSi						
60	45	Dark Orange	sSi						
60.45	1	END @60.45m							

Zone 8-Good Result ABH9 Depth (m) STP-N Colour Soil 0 Light Red sSi 0 8 sSi 1.5 Light Red sSi 3 79 Dark Orange 4.5 71 sSi Dark Orange 6 Si 38 Light Orange 7.5 41 Medium Orange Si 9 13 Pale Yellow Si 10.5 48 Pale Yellow Si 12 250 Medium Orange sSi 13.5 250 Medium Orange Si Dark Brown 15 250 sGr 16.5 300 Light Orange sGr 18 250 Dark Orange siS 19 46%/0% Light Orange SD 20.5 214 Pale Grey Si 21 214 Pale Grey Si 22.5 300 Pale Grey Si 24 siS 300 Pale Grev 25.5 214 siS Pale Grey 27 300 Pale Grey sSi 250 28.5 siS Light Grey 30 >300 Light Grey Gr 30.2 29%/0% Light Orange SD 31.7 250 Light Grey Si 33 250 Si Light Grev Si 34.5 >300 Light Grey 36 250 Light Grey Si 37.5 Si 300 Light Grey 39 250 Light Grey Si 40.5 214 Light Grey siGr 42 >300 Light Grey siGr 43.5 250 siGr Light Grev 45 >300 Light Grey siGr END @45.07m 45.07

On the other hand, ABH11 was shown very good result as compared the earlier BH1 and ABH1. Finally, with the additional total 14 nos. of ABH, we then confidently designed the pile length in respectively zones.

However, we encountered some of the pile length in 2 adjacent zones were different too much after our preliminary design stage. As such, we decided to further divide into subzones for the pile length in transition area.

Layout 1 : Pile Length Mapping for BP1800

There were two contour mappings were prepared which indicated the designed pile length for bored pile type BP1800 and BP1200, according to the ABH results. Then, we only demarcated all the zones' boundary lines according to these mapping.

Nevertheless, our design process and review were not stopped here! We encountered Granite bedrock in Zone 1B, 1D & 4 with depth ranging from 43m to 55m during the actual bored pile construction. It was a big surprise to us as none of the BH and ABH encountered Granite bedrock or boulder even to the depth of 60m. As such, we reviewed the pile length design in consideration of soil friction and rock socket. In addition, the rock samples were sent for rock point load test to verify the adopted design parameters for rock socket length calculation.

Upon completion of the project, total 3 nos. of subsequent MLT and 37 nos. of PDA testing have been carried out to verify the performance of working piles at various Zones. All of the

test results were shown in compliance to minimum factor of safety of more than 2.0 in geotechnical capacity.

We wish to take this opportunity to thank the Consultant Engineer who has spent a lot time with us in the pile design issues and they are very helpful and responsive.

Layout 2 : Final Piling Layout with Sub-Zones